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Climatic constraints on 
Cambrian palaeogeography
Thomas W. Wong Hearing1,2,3, Alexandre Pohl4,5, Mark Williams², Thomas H.P. Harvey², Yannick Donnadieu⁶, Thijs Vandenbroucke¹

1. Rationale: Divergent Cambrian palaeocontinental configurations
There are substantial differences between recently 
published Cambrian continental configurations. The 
biggest discrepancies are around Gondwana, and 
which region, if any (see Map B), resided over the 
South Pole. The discrepancies arise from the different 
methods used to reconstruct each configuration.
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2. Methods: Lithologies       Models          Climate zones

Map A after BugPlates1 and Torsvik & Cocks2,3, using palaeomagnetic 
and brachiopod biogeographic data. Map B after Landing et al.4,5, 
using lithological data. Map C after Scotese⁶, using palaeomagnetic, 
lithological, and biogeographic data. Map D after Álvaro et al.⁷, 
adapting Map A using trilobite biogeographic data. Continents: A = 
Avalonia; B = Baltica; EG = East Gondwana; L = Laurentia; NC = North 
China; S = Siberia; SC = South China; WG = West Gondwana.

Terreneuvian to Cambrian Series 2 
climatically sensitive lithology deposits 
were located on each map.

Palaeogeography exerts a greater control on data/model 
agreement than orbital forcing or atmospheric carbon 
dioxide levels. The continental configurations of maps B 
and D better explain the climate zones that are supported 
by lower Cambrian lithological data. Coupling 
quantitative climate models with qualitative geological 
palaeoclimate data is a valuable method for better 
constraining the geographic and climatic context of the 
origin and rise of complex life.

Simulations were run on the Fast Ocean 
Atmosphere Model (FOAM)⁸ for 3 pCO2 
(16, 32, 64 PAL) and 5 orbital conditions.

Model outputs were converted to Köppen 
climate zones⁹. For each map, a 
weighted score was calculated¹⁰ that 
represents the agreement between the 
lithological database and simulated 
climate zones.

3. Results: Data/Model agreement


